Matrix-specific protein kinase A signaling regulates p21-activated kinase activation by flow in endothelial cells.
نویسندگان
چکیده
RATIONALE Atherosclerosis is initiated by blood flow patterns that activate inflammatory pathways in endothelial cells. Activation of inflammatory signaling by fluid shear stress is highly dependent on the composition of the subendothelial extracellular matrix. The basement membrane proteins laminin and collagen found in normal vessels suppress flow-induced p21 activated kinase (PAK) and nuclear factor (NF)-kappaB activation. By contrast, the provisional matrix proteins fibronectin and fibrinogen found in wounded or inflamed vessels support flow-induced PAK and NF-kappaB activation. PAK mediates both flow-induced permeability and matrix-specific activation of NF-kappaB. OBJECTIVE To elucidate the mechanisms regulating matrix-specific PAK activation. METHODS AND RESULTS We now show that matrix composition does not affect the upstream pathway by which flow activates PAK (integrin activation, Rac). Instead, basement membrane proteins enhance flow-induced protein kinase (PK)A activation, which suppresses PAK. Inhibiting PKA restored flow-induced PAK and NF-kappaB activation in cells on basement membrane proteins, whereas stimulating PKA inhibited flow-induced activation of inflammatory signaling in cells on fibronectin. PKA suppressed inflammatory signaling through PAK inhibition. Activating PKA by injection of the prostacyclin analog iloprost reduced PAK activation and inflammatory gene expression at sites of disturbed flow in vivo, whereas inhibiting PKA by PKA inhibitor (PKI) injection enhanced PAK activation and inflammatory gene expression. Inhibiting PAK prevented the enhancement of inflammatory gene expression by PKI. CONCLUSIONS Basement membrane proteins inhibit inflammatory signaling in endothelial cells via PKA-dependent inhibition of PAK.
منابع مشابه
The subendothelial extracellular matrix modulates JNK activation by flow.
Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH(2)-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on f...
متن کاملIntegrative Physiology The Subendothelial Extracellular Matrix Modulates JNK Activation by Flow
Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH2-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on fib...
متن کاملAltered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow
Shear stress generated by distinct blood flow patterns modulates endothelial cell phenotype to spatially restrict atherosclerotic plaque development. Signaling through p21-activated kinase (PAK) mediates several of the deleterious effects of shear stress, including enhanced NF-κB activation and proinflammatory gene expression. Whereas shear stress activates PAK in endothelial cells on a fibrone...
متن کاملp21-Activated Kinase Signaling Regulates Oxidant-Dependent NF- B Activation by Flow
Disturbed blood flow induces inflammatory gene expression in endothelial cells, which promotes atherosclerosis. Flow stimulates the proinflammatory transcription factor nuclear factor (NF)B through integrinand Rac-dependent production of reactive oxygen species (ROS). Previous work demonstrated that NFB activation by flow is matrix-specific, occurring in cells on fibronectin but not collagen. A...
متن کاملThe Role of Protein Kinase B Signaling Pathway in Anti-cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study
Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and tumor-initiating cells (TICs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 106 8 شماره
صفحات -
تاریخ انتشار 2010